Spectrum of clinical variability in the Indian HbS-ß thalassemia patients

S.Pandey1*, R.Saxena1, R.M.Mishra2, U.K.Chauhan3, M.Sharma4, S.W.Pandey3
1Dept of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, (INDIA)
2Dept of Environmental Biology, APS University, Rewa-486003, (INDIA)
3Centre for Biotechnology Studies, APS University, Rewa -486003, (INDIA)
4Dept of Hematology, Safdarjung Hospital, Ansari Nagar, New Delhi-110029, (INDIA)
E-mail : pandeysanjaybt@rediffmail.com
Received: 1st July, 2013 ; Accepted: 15th August, 2013

KEYWORDS
HPLC;
Sickle cell;
Hemoglobinopathies.

INTRODUCTION

Sickle cell disease is quite variable in itself and few of the factors that contribute to this variability. Some are genetic, others likely involve environmental influences. One of the most important genetic factors is thalassemia. One form of thalassemia, called ß-thalassemia reduces the production of normal hemoglobin. Most clinical manifestation in the HbS syndrome are due to the ß gene mutation and depend on amount of sickling[1]. However when there is coinheritance of ß-thal gene mutation, as in S-ß thalassemia; the clinical picture may vary depending on the type of ß-thal gene mutation present[2,3]. Sickle cell ß-thalassemia also known micro drepanocytic disease. This disorder occurs when one beta gene carries HbS mutation and the other gene carries beta thalassemia mutation (double heterozygous state). It is commonly observed in West Africa, the Mediterranean countries, and India. Clinical manifestations are decided by whether the beta thalassemia gene inherited is ß° or ß+. The severity of sickle ß-thalassemia varies. Some patients with sickle ß-thalassemia have a condition as severe as sickle cell disease itself. Others have few and relatively mild problems. It is well known that SS disease is more severe than ß-thalassemia patients[4]. Our aim was to evaluate the clinical variability of Indian sickle cell beta thalassemia patients due to presence of various thalassemia mutations.

MATERIALS AND METHOD

Patient of sickle ß-thalassemia were recruited from...
Out patient department: All India Institute of Medical Sciences (AIIMS) New Delhi. Study was approved from institutional ethical committee. Five ml blood sample was collected from patients after taken signed consent. All investigations done in the department of hematology AIIMS. Diagnosis of sickle β-thalassemia patients and quantitative assessment of hemoglobin Hb F, Hb A, Hb A2 and Hb S done by high performance liquid chromatography (HPLC-Bio-Rad-VariantTMBio Rad, CA, USA). Complete blood count and red cell indices were measured by automated cell analyzer (SYSMEX K-4500, Kobe Japan).

Giemsa-stained peripheral blood smears were examined for red cell morphology. ARMS-PCR applied for the molecular study of beta mutations according to published literatures[6]. Mean values, standard deviation & frequency distribution used to evaluate the hematological & clinical data.

RESULT AND DISCUSSION

Sixty five sickle β-thalassemia patients divided in two group; HbSβ+ and HbSβ0 according to the severity of disease. Nineteen patients were HbSβ+ with a mean age 10.7±6.2 (12 male and 7 female) while 46 patients were HbSβ0 with mean age 13.1±7.4 (27 male and 19 female). HbSβ-thalassemia patients red cells were microcytic hypochromic and sickle cell with few target cells. Peripheral blood smear shows feature of both sickle cell anemia and thalassemia. Red cell indices decreased. HbS 60-70%, HbA2 (4-10%) and HbF was 9-21%. HbSβ-thalassemia patients red cell morphology and sickle cell with few target cells. Peripheral blood smear shows feature of both sickle cell anemia and thalassemia. Red cell indices decreased.

Hematological, clinical and thalassemia mutations details are given in TABLE 1, 2 and 3 respectively. Sub classification of Sickle cell β-thalassemia in to sickle β0 thalassemia and sickle β+ thalassemia on the basis of clinical features alone is difficult[7]. The clinical features of HbSβ-thalassemia are extremely variable ranging from completely asymptomatic state to severe disease similar to homozygous sickle cell disease[8]. The effect of β-thalassemia mutation on the clinical severity of β-thalassemia are well documented[9]. The clinical severity largely depend upon the nature or the β-thalassemia mutation i.e. β0 or β+10]. In our cases the hemoglobin, reticulocytes and red cell indices were improved in compression to HbSβ0 patients. Although 36.84% HbSβ+ patients were transfusion dependent but their clinical presentation was mild. Mild sickle cell β+ thalassemia occurs predominantly in Africa and resembles sickle cell trait[4].
Patient with HbS β+ thalassemia had mild to moderate presentation while those with HbS β0 thalassemia showed more heterogeneity in clinical manifestation\(^\text{[5,11-13]}\). The mild mutations of thalassemia in combination with other severe β+ or β0 mutations resulted in a very variable clinical presentation\(^\text{[14]}\). In our cases the common thalassemia mutation present in the patients with variable frequency and mild to severe phenotypes of HbSβ+ as well as HbSβ0 thalassemia patients. The observation of the study concludes the hematological features of the HbSβ+ thalassemia patients similar to thalassemia intermedia with mild to moderate severity. While the HbSβ0-thalassemia closely related with sickle cell anemia.

ACKNOWLEDGEMENTS

Sincere thanks to technical staff of department of hematology AIIMS, for expert assistance. This study Financial supported by ICMR & Hematology Department AIIMS, New Delhi, India.

REFERENCES

